
REVIEW

Deciphering the Role of Proteoglycans and Glycosaminoglycans in Health and Disease

Methods for isolating and analyzing physiological hyaluronan: a review

Felipe Rivas,1 Dorothea Erxleben,1 Ian Smith,1 Elaheh Rahbar,1 Paul L. DeAngelis,2 Mary K. Cowman,3,4 and
Adam R. Hall1,5

1Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine,
Winston-Salem, North Carolina; 2Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences
Center, Oklahoma City, Oklahoma; 3Department of Biomedical Engineering, New York University Tandon School of
Engineering, New York, New York; 4Department of Orthopedic Surgery, New York University Grossman School of Medicine,
New York, New York; and 5Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina

Abstract

The carbohydrate hyaluronan (or hyaluronic acid, HA) is found in all human tissues and biofluids where it has wide-ranging func-
tions in health and disease that are dictated by both its abundance and size. Consequently, hyaluronan evaluation in physiologi-
cal samples has significant translational potential. Although the analytical tools and techniques for probing other biomolecules
such as proteins and nucleic acids have become standard approaches in biochemistry, those available for investigating hyalur-
onan are less well established. In this review, we survey methods related to the assessment of native hyaluronan in biological
specimens, including protocols for separating it from biological matrices and technologies for determining its concentration and
molecular weight.
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INTRODUCTION

Hyaluronan (or hyaluronic acid; HA) is a linear glycosami-
noglycan (GAG) composed of the alternating disaccharide
repeat structure [-4-D-glucuronic acid-b1-3-N-acetyl D-gluco-
samine-b1-]n that was first reported nearly a century ago by
Meyer and Palmer (1), who derived its name from the biologi-
cal matrix from which it was sourced (“hyaloid,” for vitreous
humor) and the major chemical constituent it contained
(uronic acid). Structurally, HA does not exhibit the substitu-
ent sulfation that is typical of other GAGs (2–4), resulting in
a consistent chemical configuration and negative electro-
static charge at physiological pH. As a semiflexible anionic
polymer, HA forms a hydrated entropic coil in solution that
can produce nonlinear viscoelastic properties through coil-
coil interactions (5). In free solution, this behavior is driven
by physical crowding, dictated largely (6) by HA concentra-
tion and polymer size (i.e., larger molecules occupy more
entropic volume and promote domain overlap). However, in
physiological systems, the activity of binding entities is
another major contributing factor. Although the only natural
covalent alteration known to impact HA is the attachment of
the inter-a-inhibitor heavy chain (HC) domain by the cata-
lytic activity of the tumor necrosis factor-inducible-gene 6
(TSG-6) enzyme (7), a variety of noncovalent interactions

with proteoglycans and other proteins (8) are also known to
occur, facilitating the variation of intermolecular interfaces
and consequently of the local physicochemical environment
in vivo.

As a component of diverse mammalian tissues and bio-
fluids (9, 10) [as well as other, nonmammalian systems (11–
13)], HA exists in various quantities (14) and is generally pol-
ydisperse, covering a broad range (9) of molecular weight
(MW) from �105 to 107 Da (�250–25,000 disaccharide units).
In its ubiquity, HA is known to play critical roles in diverse
biological functions like extracellular matrix structure (9),
hydration and turgidity maintenance of tissue (9), regulation
of innate immunity (15), tissue regeneration and repair (16),
and the protection and lubrication of joints (17), each
of which can be impacted by its particular size distribution
(i.e., low vs. high MW). This diversity also makes clear the
corresponding importance of HA to pathological processes,
and its abundance and/or size distribution have indeed been
identified as a major factor in diseases that include liver fibro-
sis (18, 19), amyotrophic lateral sclerosis (20), multiple sclero-
sis (21), acute kidney injury (22), myocardial ischemia (23),
osteoarthritis (24–26), and various forms of cancer (27–31).
The importance of HA as a potential bioindicator necessitates
robust technologies for elucidating its complex interactions
with the physiological environment and subsequently for
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assessing it in clinical specimens toward patient diagnosis
and prognosis. Here, we will review the major approaches rel-
evant to this goal, including both the purification of HA from
diverse biological specimens and the determination of its
properties.

HA ISOLATION AND EXTRACTION METHODS

HA analytical techniques typically require pure samples,
either due to intrinsic nonselectivity or potential interfer-
ence from background contaminants. For this reason, pre-
treatment of native biospecimens is critical. Broadly, the
approaches for HA separation from its physiological matrix
can be classified in two groups: isolation, or the removal of
nontarget components to leave pure HA behind, and extrac-
tion, or the specific retrieval of HA from a complex milieu
based on its physical or chemical properties.

Toward isolation, a variety of chemical and biochemical
techniques have been adapted to HA since the earliest
reports of its retrieval. These approaches necessitate some
protocol differences based on the properties of the starting
material; for example, bone (32) is flash frozen and powdered
by milling, blood (33) or conditioned media (34) are centri-
fuged to remove cells, and egg shell (35, 36) is decalcified by
acetic acid or EDTA. However, outside of these pretreat-
ments, a common set of treatments is generally used, either
concurrently (37) or more typically in a stepwise manner.
First, lipids can be removed by a variety of solvents, includ-
ing acetone (1, 13, 38–41) or chloroform-methanol (35, 42–44)
followed by enzymatic digestion of protein components, of-
ten using broad-spectrum proteases such as proteinase K or
pronase (40, 42, 45–51). It has been noted (45) that some
broad-spectrum proteases can induce HA degradation (likely
due to contaminating glycanases, highlighting the utility of
process validation with “spiked” HA internal standards) and
so a more directed protease (32, 35, 36, 41, 44, 52) may also
be selected depending on the specimen type. Finally, nucleic
acids are digested by nuclease treatment (33, 47, 53–56) and
then all utilized enzymes are commonly inactivated by heat
(41, 48, 53), leaving GAGs in solution with the remaining
digest and cleavage products. If necessary (dependent on
protease selection), the GAGs may be further processed to
remove core protein peptide fragments through b-elimina-
tion (40, 44) or other chemical treatments (13, 32), but are
then generally separated from residual material via chloro-
form extraction and/or ethanol precipitation (13, 34, 49, 52)
or with detergents (35).

Because all GAGs coprecipitate with these recovery strat-
egies, the challenge then becomes removal of off-target spe-
cies to isolate HA alone. In principle, this could be achieved
with selected GAG lyases (57), but in practice, many tend to
have cross-reactivity with HA that can result in unintended
degradation. To circumvent this, the unsulfated nature of
HA has been exploited through strategies designed to specifi-
cally remove sulfated GAGs, including chemical fractiona-
tion with either cetylpyridinium chloride (58) or ethanol (59)
and ion exchange chromatography (39).

Although historically critical to the study of HA, isolation
strategies have significant drawbacks. For example, they are
limited in their ability to achieve ultrahigh purity HA sam-
ples, because non-HA GAGs can display variable sulfation (2,

60), off-target contaminants can be co-segregated with HA
(51). In addition, the multiple steps and purifications gener-
ally required for the implementation of these approaches
can be lossy, reducing HA yield, especially in biological
matrices with low relative starting abundance. For these
reasons, extraction techniques are more common in mod-
ern processes.

Immunoprecipitation (IP) has been used commonly for
small-scale affinity purification and isolation of proteins. In
the general technique, target-specific antibodies are immobi-
lized on a substrate (e.g., on gel/resin or beads) and used to
bind to the protein of interest selectively from a mixture.
Once captured, excess material is removed (or, in the case of
beads, the substrate is pelleted and washed) and target pro-
teins are eluted to recover the target material, providing
high-purity product. The IP concept was first applied to HA
extraction by Yuan et al. (46) who substituted antibodies
with hyaladherins to achieve selective capture of HA from
human breast milk. As a substrate, commercial streptavidin-
coated paramagnetic beads were used after conjugation to
highly HA-specific versican G1 domains (VG1) via a biotin
moiety, enabling fast pelleting under an applied magnetic
field. To avoid interference, isolation steps (like those
described earlier) were used to remove or degrade macromo-
lecules (lipids, proteins, and nucleic acids) and salts from the
raw specimen. However, cleanup requirements were less
stringent due to VG1 specificity. Collected HA could subse-
quently be eluted via heat denaturation of the VG1. This ver-
satile approach (or slight variations of it) has been extended
to extract HA from several complex biological specimens
including synovial fluid (50, 61), blood, urine, ovarian tissue
(62), andmouse brain (56).

Some key challenges remain to be addressed with the
existing IP protocol. For example, elution by heat denatu-
ration renders the VG1 permanently inactive, preventing
repeat captures and increasing reagent costs. Other approaches
like proteinase K degradation have proven viable but have the
same difficulty. In addition, the recovery fidelity of HA capture
must be more fully validated; due to the nature of diffusion
kinetics, low-MW (LMW) HA moves faster through solution
than high-MW (HMW) HA and this can allow LMW HA to
access binding sites more efficiently, creating potential bias
that will persist through downstream analyses. Care must be
taken to ensure captured HA is representative of the native
distribution.

QUANTITATIVE MEASUREMENT
APPROACHES FOR HA

Because HA lacks chemical variation, analytical techni-
ques focus on two main values of critical importance to its
biological activity: abundance and MW. In this section, we
describe approaches for probing each of these factors in
turn.

HA Concentration Determination

Physiological HA experiences a high rate of turnover
(9) that is governed by associated metabolic (63, 64) and
catabolic (65–67) pathways. In healthy individuals, a
homeostatic balance is generally maintained such that
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HA concentration tends to be relatively consistent in a
given tissue or biofluid (10). However, pathologies that
impact either the production or (more often) the clearance
of HA can have a significant impact on its abundance in
vivo. For this reason, changes in HA concentration have
been associated with several disease states in humans,
including liver diseases [cirrhosis (68, 69) and fibrosis
(70)], osteoarthritis (71, 72), and certain cancers (73, 74),
and is currently in clinical use as a urinary biomarker of
bladder cancer (75, 76).

There are several options for HA quantification in biospe-
cimens. Although conventional techniques used in biochem-
istry have been applied, such protocols generally have
critical limitations. For example, high-performance liquid
chromatography (HPLC) has recently been implemented
with ultraviolet detection to probe HA viscosupplements
(77), but the potential for interference from background con-
stituents in complex biological specimens reduces specificity
and necessitates comparative analyses on the same sample
both with and without hyaluronidase treatment to assess
HA. As a result, this method has reduced translational
capacity. Mass spectrometry has also been applied (78, 79)
but its dynamic range has an upper limit of �10–50 kDa.
Consequently, it typically requires complete hydrolysis of
the HA, similar to HPLC, thus precluding downstream size
analysis. For these reasons, alternative methods for quantifi-
cation are typically used for HA derived from biospecimens.

Imaging modalities.
A number of imaging techniques have been used for probing
HA. For example, histological analysis, through which HA in
cell culture or tissues is labeled for direct imaging, has been
demonstrated for a wide range of specimens (80–86).
Because HA-specific antibodies are not available (HA is a
“self” molecule) (87), labeling of HA has been enabled
instead by highly specific HA binding proteins, especially
the cartilage link protein (88), the aggrecan terminal frag-
ment globular domain 1-interglobular domain-globular do-
main 2 (G1-IGD-G2 or HA binding protein, HABP) (89), and
VG1 (90). Of these, HABP and VG1 have comparably high
specificity and affinity, but the cartilage link protein is less
efficacious and in modern protocols is generally avoided
(and is a common contaminant in HABP isolated from bo-
vine nasal cartilage, for example). Although histological HA
assessment is often qualitative, content determination can
be performed either fluorometrically (91) or using a second-
ary radiolabeling technique (81), both of which provide the
added benefit of also localizing HA in the tissue. However,
among the significant disadvantages of this approach are its
inability to deliver direct quantification, instead of assessing
HA levels relative to an internal standard or between condi-
tions, and its limitations with viable biological matrices (i.e.,
biological fluids cannot be assessed). A second imaging mo-
dality that has been applied to HA quantification is magnetic
resonance imaging (MRI) supplemented with chemical
exchange saturation transfer (CEST) (92) wherein proton
spins in HA are saturated and exchanged with the bulk water
surrounding them, resulting in an enhancement in image
contrast. Quantification of HA can be derived subsequently
from the integrated CEST signal. Due to the noninvasive na-
ture of MRI, this approach has the major advantage of being

applicable to live imaging of tissues (23), especially monitor-
ing the behavior and lifetime of implanted HA-biomaterials
(i.e., macroscopic amounts of relatively pure HA). However,
a significant drawback is its limited specificity for HA; CEST
results in an image enhancement for exchangeable protons
in general and so off-target analytes like proteins and other
GAGs can contribute to the signal, strongly impacting accu-
rate HA quantitation. In addition, like all imaging modal-
ities, CEST cannot provide HAMW information.

ELISA-like assays.
The most widely used techniques for the determination of
HA concentration are extensions of the enzyme-linked im-
munosorbent assay (ELISA), the antibody-based approach
initially developed for quantifying protein antigens (93). As
described earlier for histological imaging, ELISA quantifica-
tion uses HA binding proteins like the cartilage link protein,
the HABP portion of aggrecan, and VG1. Two ELISA-like
assay formats are typical for HA: sandwich assays (94–99)
(Fig. 1A) in which sample HA is introduced to a surface-
bound binding agent and a second, labeled binding agent is
then provided to enable quantification through double bind-
ing, or competitive assays (97, 100–104) (Fig. 1B) in which la-
beled binding agent is introduced to surface-bound HA and
then its displacement through competition with sample HA
is used to determine quantity. Several strategies have been
demonstrated for labeling HA binders, including radiolabel-
ing, fluorescence, biotinylation (with subsequent streptavi-
din labeling), and chemiluminescence. Although both
sandwich and competitive ELISA-like assays are common
and offer high concentration resolution (typically 25 ng/mL)
(105), it has been noted that sandwich assays in particular
are biased toward high-molecular weight HA (96, 99, 106)
and thus fail to quantify smaller fragments accurately.
AlphaScreen. An emerging alternative approach to HA

quantification is an adaptation of the Luminescent Oxygen
Channeling Immunoassay (107), conducted commercially
for drug discovery under the name AlphaScreen. In the gen-
eral procedure (Fig. 1C), two types of beads are used: donor
beads loaded with chromophores that can generate singlet
oxygen when excited optically; and acceptor beads loaded
with separate chromophores that react with singlet oxygen
to chemiluminescence. The reaction is proximity-dependent
due to the short lifetime of singlet oxygen and so only occurs
efficiently when the two beads are physically separated by
nomore than�200 nm.

In the modified assay developed for HA (108), the donor
beads are conjugated to short biotinylated HA (50 kDa)
through streptavidin coupling and the acceptor beads are
bound to HABP, enabling the HA-HABP interaction to keep
the beads in close proximity and producing a robust chemi-
luminescent signal. Introduction of unknown sample HA
competes for HABP, releasing the bead complex and reduc-
ing the signal in a concentration-dependent manner. Using
this approach to quantify HA, AlphaScreen provides similar
concentration resolution to ELISA techniques (30 ng/mL)
but requires less sample volume (108) (2.5 μL vs. 100 μL) and
avoids labor-intensive washing steps of the plate-based
methods.

The ELISA-like assays and the AlphaScreen assay are both
somewhat tolerant of sample purity due to their respective
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specificities of binding and so only factors that could impact
measurement efficacy need to be managed. For example, HA
binding proteins in solution will compete for HA with assay
probe proteins and active aggrecanases (109) can cleave HABP
and have detrimental effects on HA binding. Therefore, aside
from protein degradation, only moderate purification steps
are required and should in fact be avoided as possible due to
the potential for sample loss that could impact accurate HA
quantification. However, a central limitation for each of these
techniques is their inability to assess MW as the second major
figure of merit for HA. For this, additional techniques are
required.

Molecular Weight Determination

HA is naturally polydisperse in all organisms, but the par-
ticular MWs present in a given specimen are critical to its
behavior. Indeed, a remarkable dichotomy exists in this size-
function relationship, with the activity of HMW HA relative
to LMW HA (110–116)—or in some cases a narrow distinct
MW range relative to other sizes (51, 117)—being contradic-
tory. A critical example of this phenomenon is in inflamma-
tion. In its usual HMW conformation in the glycocalyx and
extracellular matrix (9), HA acts as a tissue integrity signal
and is thus anti-inflammatory in a number of ways (118),
including interacting with cell surface receptors to prevent
immune cell recognition (119), reducing inflammatory cyto-
kines (120), and inducing STAT5 signaling in regulatory T-
cells to promote their maintenance (121). Under inflamma-
tory conditions, however, an abundance of LMWHA (<�500
kDa) is found, likely due to damage and/or degradation. It
has been shown that LMWHA is instead proinflammatory in

several respects, including upregulating the transcription of
inflammatory genes (e.g., TNF-a, IL-1b) (122, 123) and stimu-
lating growth factors (124) and other inflammatory elements
(125, 126) in macrophages. Stark contrasts in size-dependent
HA functions have also been reported in processes like cell
migration/invasion (127–129), angiogenesis (130, 131), and
joint lubrication (120), among others. Consequently, deter-
mination of MW is critical to the validity of HA as a transla-
tional bioindicator of disease.

Viscometry.
Viscometry is a method to analyze and measure bulk HA so-
lution flow that can yield average molecular weight informa-
tion (132). As HA MW (and/or concentration) increases,
increased polymer chain entanglement will increase viscos-
ity and impede the free flow of the liquid in a way that can
be measured. Typically, a purified HA solution is either: 1)
flowed through a calibrated tube or capillary with the force
of gravity and the speed of transit between two marks is
measured; or 2) positioned between one mobile (rotor) and
one stationary (stator) plate or cylinder and the forces for
starting or stopping the rotor element is monitored. In both
cases, HA MW is determined using the Stokes–Einstein
equation and tables based on previous model HA studies
using biophysical sedimentation. However, viscometry has
several practical challenges, including the requirement for
large sample sizes (up to 1 g of HA, depending on chain size
and the device) and variability induced by the dependence
of viscosity on experimental factors like ionic strength and
temperature. Moreover, viscometry can only provide a mean
MW rather than distribution. Still, industry often uses the

Figure 1. A: sandwich enzyme-linked immunosorbent assay (ELISA)-like assay wherein surface-bound hyaluronan (HA) binding proteins i) are contacted
with specimen HA ii) and labeled (green) secondary HA binding proteins are introduced for quantification iii). B: competitive ELISA-like assay in which
surface-bound HA binding proteins preloaded with standard HA and labeled secondary HA binding proteins i) are contacted with specimen HA ii) that
competes for labeled entities and reduces signal. C: AlphaScreen construct composed of a donor bead with bound HA (right) that creates singlet oxygen
upon optical excitement (ɣ), diffusing to an acceptor bead (left) held proximal by a surface-bound HA binding protein thereby producing emission (yel-
low). Competitive binding with specimen HA will reduce signal as in (B).
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technique for product quality checks as it is a simple, well-
established method to obtain average MW information
from HA.

Multi-angle light scattering.
Light scattering (LS), a method to analyze HA MW from the
angular distribution and intensity of photons interacting
with macromolecules, is a relatively sensitive process that
has the advantage of not requiring comparison to a standard.
Two modes of LS are practiced: multi-angle light scattering
(MALS) (133) and dynamic light scattering (DLS). Typically,
the former is used for HA MW analysis (from �7 kDa to sev-
eral MDa); the latter is more suited for particle sizing (e.g.,
cross-linked gels). From a practical standpoint, the required
HA sample size for MALS depends on the relative MW of the
polymer since larger molecules scatter light more strongly
than smaller ones. In the simplest embodiment, a known
concentration of purified HA (as contaminants can skew
results) is injected into a liquid cell and the MW and polydis-
persity results are obtained based on the intensity and angu-
lar distribution of scattered light. The more angles of
scattering data that are used, the better the MW determina-
tion; currently, modern detectors simultaneously measure
from 3 to 17 angles.

Typically, most modern MALS instruments used a HPLC-
size exclusion chromatography (HPLC-SEC) approach as
both a separationmethod and “pre-filter” (dust and contami-
nant particles can overshadow the target HA) as well as an
independent means to assess size distribution. In addition,
after the MALS detector, an in-line tandem refractometer is
used to measure the concentration of HA; this is especially
useful for smaller samples (e.g., precious patient extracts
and trials of synthetic products) where the exact concentra-
tion is not known. To determine MW, the amount of scat-
tered light and concentration are related through a refractive
index increment constant (dn/dc) that is derived empirically
by injecting a series of HA solutions of known concentration
in a defined buffer solution into the MALS cell sequentially.
Many workers in the field use a known buffer such as neutral
phosphate buffered saline (0.15 M NaCl) with an established
dn/dc value (ranging from 0.153 to 0.167) to avoid unknowns
and promote reproducibility. In addition, this buffer is often
regarded as compatible with physiological processes. A
monodisperse protein standard like bovine serum albumin
(66 kDa) is often used to align the outputs of the two detec-
tors, the refractive index, and light scattering cells, as well as
calibrateMW and thus validate system performance.

Field flow fractionation (FFF) is also used as a separation
method for very high MW [>1–2 MDa HA polymers (134)]; in
the MDa range, most existing size exclusion resins are not as
useful and can cause some chain shearing, leading to a lower
apparent MW value. In a simplistic description of a useful
permutation of FFF, the HA sample flows down an open
channel similar to chromatographic approaches, but the de-
vice simultaneously uses an additional perpendicular fluid
flow across a semipermeable membrane along the axis of the
channel. Because larger molecules are more affected than
the smaller molecules by the cross-flow, HA molecules can
be separated according to size and quantified separately.
Currently, these devices are more expensive and less numer-
ous thanHPLC-SEC setups.

One challenge withMALS approaches is their requirement
for significant amounts of HA, dependent on MW and size
distribution. By way of example, HA synthesized chemoen-
zymatically in vitro (135, 136) can achieve a polydispersity
index (PDI, or the ratio of the number-average MW to the
weight-average MW) of 1.005–1.05, close to a truly monodis-
perse (PDI = 1.0) polymer. For such quasi-monodisperse HA
>500 kDa, �5–20 μg may be needed for analysis whereas
polymers <50 kDa may require 75–100 μg. In physiological
HA, the PDI is typically �1.3–2.0, and since SEC does not
allow the majority of HA to be in the MALS detector cell at
once (i.e., the wide peak is spread over the elution time),�2–
5 times more sample may be needed. MALS measurements
are intrinsically rapid but are limited by the HPLC-SEC or
FFF step such that each test will typically take �15–60 min,
and at least duplicate runs should be performed. The abso-
lute MW obtained through MALS is widely recognized as the
gold standard, but the accuracy of the size distributions it
can deliver is somewhat limited by the separation method
resolution.

Gas-phase electrophoretic mobility molecular analysis.
Gas-phase electrophoretic mobility molecular analysis
(GEMMA) measures the electrophoretic mobility of single-
ionized, spherical molecules and constructs in air to estimate
MW. This technique has previously been used to differentiate
MWs of globular proteins and viruses (137–139). However,
Malm et al. (140) demonstrated that the logarithmic depend-
ence of electrophoretic mobility diameter (EMD) for HA (with
the exception of small HA oligomers) can be used to produce
a reliable assessment of MW in the range of 30–2,400 kDa,
spanning most of its typical physiological range. Like MALS,
GEMMA requires a highly purified HA sample as contami-
nants will skew the results. But in contrast to HPLC-SEC, only
a single calibration of analyte electrophoretic mobility is
needed rather than routine calibrations, and the resolution of
GEMMA is comparable with SEC such that its ability to pro-
duce a full MW distribution is limited; it is most effective for
comparing distributions of GEMMA spectra between groups
(e.g., healthy and pathological tissues).

Measurement time for one spectrum is rapid (5–10 min)
and requires as little as 6 pg of total HA, making it an excel-
lent tool for determining the MW of HA from biological
specimens with low HA concentrations (141), including tis-
sue samples from small rodents (e.g., mice) and small vol-
ume biological fluids (e.g., cerebrospinal fluid and bronchial
lavage). However, one intrinsic limitation of the GEMMA
approach is the assumption of spherical molecules: variation
in instantaneous polymer conformation can produce devia-
tions from this model that may cause measurement inaccur-
acies. For example, the technique has been shown (140) to
underestimateMW for HAmolecules> 70 kDa.

Gel electrophoresis.
Gel electrophoresis is a simple and inexpensive method to
estimate the MWdistribution of unlabeled HA samples rang-
ing in size (142–150) from a few kDa up to at least 6,000 kDa
that has been used to analyze HA isolated from numerous
tissues and biofluids including skin (49, 151), skeletal muscle
(151), heart (151), lung (47, 151), brain (56), small and large
intestine (151), mammary gland (54), cervix (152), synovial
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fluid (10, 50, 61, 144), vitreous (144), milk (46), lymph fluid
(153), and the conditioned medium of cultured cells (53, 63,
154–162). The charge-to-mass ratio is constant for all HA
molecules due to the homogeneous repeating primary struc-
ture containing one negatively charged carboxyl group per
disaccharide. Thus, like DNA or denatured proteins, migra-
tion of HA through a gel matrix under the influence of an
applied electric field allows sieving on the basis of size. At
the end of the migration time, cationic dyes like Stains-All
can be used to immobilize and label HA in the gel (163).
Densitometric analysis of the stained pattern can then allow

determination of the mean MW and distribution of MWs
(polydispersity) of HA in the sample.

Generally, HA greater than �100 kDa is best size-sepa-
rated and analyzed on agarose gels (Fig. 2) using total HA
mass in the range of 0.1–7 μg, depending on polydispersity
and staining method. The applicable MW range depends on
agarose concentration and buffer. Concentrations of 0.5%–

2% agarose are used most commonly, typically with Tris-
borate-EDTA (TBE) or Tris-acetate-EDTA (TAE) (150) as
buffer. HA from �5–100 kDa can be size separated and ana-
lyzed best by polyacrylamide gel electrophoresis (Fig. 3)

Figure 2. A: electrophoresis of hyaluronan (HA) on 0.5% agarose in Tris-acetate-EDTA (TAE) buffer, stained with Stains-All dye. The chemoenzymatically
synthesized HA standards appear as sharp bands, but HA isolated from tissue or bacterial sources appears highly polydisperse. The viscosity-average
molecular weight (MW) of the two polydisperse samples is indicated. B: calibration plot for electrophoretic migration of HA standards. Migration distance
for each band was normalized to the migration distance of the smallest HA species. Adapted with permission from Ref. 144. Copyright 2011, Elsevier Inc.

Figure 3. A: electrophoresis of hyaluronan (HA) on a 4%–20% polyacrylamide gradient gel in Tris-borate-EDTA (TBE) buffer, with detection by Stains-All
dye. Chemoenzymatically synthesized HA standards appear as discrete bands, but HA samples obtained by controlled degradation of high-molecular
weight (HMW) HA appeared highly polydisperse. The viscosity-average molecular weight (MW) values of the polydisperse samples are indicated. B: cali-
bration plot for electrophoretic migration of HA standards. Adapted with permission from Ref. 143. Copyright 2011, Elsevier Inc.
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using total HAmass of �0.5–1.0 μg. Simple gels containing a
constant acrylamide concentration (e.g., 10%) can be used,
but commercially available gradient gels (e.g., 4%–20% ac-
rylamide) in TBE buffer can yield excellent separation. All
HA larger than �100 kDa moves slowly, but the resulting
sharp bands can be analyzed to quantify as little as 0.1 μg HA
by densitometric analysis. At the other extreme, HA oligo-
saccharides smaller than �11 disaccharides (4.4 kDa) cannot
be detected quantitatively by dyes (142) (possibly due to
poor immobilization in the gel), but can be analyzed by
the fluorophore-assisted carbohydrate electrophoresis
(FACE) method (78, 147, 164–170), which uses reducing-
end labeling of the oligosaccharides with a fluorescent dye
before electrophoresis so that no additional staining and
de-staining procedure is needed.

HA standards must be co-electrophoresed in the same gel
used for unknown samples to create a standard curve for size
analysis. Chemoenzymatically synthesized quasi-monodis-
perse HAs (135, 136) are good for this purpose. Sample purifi-
cation is also a consideration but HA does not need to be
highly pure to be analyzed by gel electrophoresis, especially
if specific detection is used. However, it must be free of
strongly bound proteins like aggrecan or HC, which can
cause an electrophoretic mobility shift (149), and non-HA
anionic contaminants that can be stained by nonspecific

dyes like Stains-All or Alcian Blue þ /� silver staining. An
HA-specific hyaluronidase from Streptomyces [but not testic-
ular hyaluronidase as it can also digest chondroitins (171)])
can be used to confirm the identity of bands (46). Notably, a
detailed protocol for agarose gel electrophoresis of HA has
been published previously (150). Instructions and spread-
sheets for analysis of densitometric scans, and calculation of
weight-average and number-average molecular masses have
been included as Supplemental Material files in a published
method (148).

Nanopore analysis.
Nanopore analysis is an emergent single-molecule approach
in which a thin membrane containing an individual, nano-
meter-scale aperture is positioned between two reservoirs of
electrolyte solution and an applied voltage is used to trans-
port molecules introduced to one reservoir through the pore
electrophoretically (Fig. 4A). The translocation creates a
temporary reduction in the measured ionic current passing
through the pore (Fig. 4A, insets), the characteristics of
which can convey properties of the passing molecule: for
example, signal duration indicates molecular length and sig-
nal amplitude (blockage depth) corresponds to molecular di-
ameter. Currently, there are two classes of nanopore
platforms: biological nanopores (173–175), composed of a

Figure 4. A: schematic of the SS-nanopore measurement approach showing a hyaluronan (HA) (green) pulled electrophoretically through a nanometer-
scale pore (blue). Top inset: example current trace showing molecular translocation signals (spikes). Bottom inset: zoom of a translocation signal indicat-
ing event charge deficit (ECD) (green). B: calibration plot of ECDs for chemoenzymatically synthesized HA standards. Line is a power law fit to the data.
Reprinted from Ref. 50 under the Creative Commons CC BY license. C: example molecular weight (MW) distribution histograms collected for HA derived
from bacterial membrane fragments for indicated times. Reprinted from Ref. 172 under the Creative Commons CC BY license.
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porin protein inserted in a suspended lipid membrane, and
solid-state (SS-) nanopores (176, 177), composed of single
apertures fabricated in a (usually silicon-based) thin-film
membrane. Although biological pores have been applied to
HA measurement (178), they are generally delicate (due to
the lipid membrane) and have yielded limited size capacity.
Consequently, our discussion here will focus on their artifi-
cial counterparts.

SS-nanopores can be engineered to various dimensions,
but HA analysis is typically performed using pores �7–10
nm in diameter (50). Because the cross-section of a single
HA chain ismuch less than this (<1 nm) (179, 180), molecules
are unlikely to translocate linearly, but rather pass in a ran-
dom, folded conformation that results in complex electrical
signatures. To account for this, signal area [called event
charge deficit (181), or ECD; see Fig. 4A, bottom inset] is con-
sidered—since folding (higher amplitude) will necessarily be
offset by shortened signal duration, this metric is a constant
for a given molecular size. Indeed, when quasi-monodis-
perse HA are analyzed, ECD is found to scale with MW
according to a power-law dependency (50), providing a
quantitative size calibration (Fig. 4B). Consequently, translo-
cation signals can be used to determine HA MW on a mole-
cule-by-molecule basis and a full distribution can be
attained by analyzing a representative sampling of HA in a
specimen. Commonly, this is achieved through considera-
tion of at least 500 molecules (and more often many thou-
sands), which is measurable in a typical timeframe of 15–20
min from HA samples as small as 10 ng total (50). There is
also potential for this sensitivity to be improved further
through enhanced extraction or manipulation of experimen-
tal variables (e.g., buffer conditions, voltage, etc.).

Notably, the lower MW limit for SS-nanopore measure-
ments is determined by the signal-to-noise ratio (SNR) of the
electrical signal. Under common measurement conditions,
this enables HA as low as 54 kDa to be resolved readily (50).
However, several strategies could be applied to improve this
value, including ultra-low noise SS-nanopore devices (182–
184) and high bandwidth electrical systems (185, 186). In
principle, there is no upper MW limit to the assessment, but
extremely large molecules can promote transient clogging of
the pore due to entanglement, potentially resulting in an
overestimated ECD and thus MW. Nonetheless, measure-
ments of HA up to�20MDa have been demonstrated (172).

Understanding the molecular translocation process is crit-
ical to ensuring accurate data; for example, if LMW HA is
more likely to transit the pore than HMW, the resulting dis-
tribution will be biased. In the case of HA, a series of meas-
urements have been performed to determine the relevant
dynamics, finding that the rate of translocation signals for a
given concentration varies linearly with voltage (50). This is
indicative of diffusion-limited translocation (187, 188), such
that there is no MW dependence of molecular capture.
Consequently, SS-nanopores yield faithful size distributions
for arbitrarymixtures of HA; a capacity that has been applied
to material from a variety of sources that includes equine sy-
novial fluid (50, 61), human ovarian tissue (62), and HA syn-
thesized in vitro from bacterial membrane fragments (172)
(Fig. 4C). In addition, the rate of measured translocation sig-
nals is known to correlate with HA concentration in solution
(50), indicating that SS-nanopores could deliver both MW

distribution and quantification in a single measurement if
data analysis could compensate for the impact of extraction
on the observed concentration.

Conclusions

The myriad physiological roles of HA drives a rising trans-
lational interest in the molecule and supports a growing
number of use cases that range from structural biomaterial
to treatment to diagnostic target. This interest underscores
the need for robust analytical approaches to characterize the
molecule and as the demand for HA assessment increases,
the most appropriate purification strategies and tools will be
dictated by the particular needs of the task. For example, in
the emerging area of clinical HA diagnostics, evaluation of
patient tissues and biofluids will require not only high fidel-
ity and high selectivity extraction processes, but also rapid
and sensitive analyses that can providemultidimensional in-
formation about the characteristics of physiological HA—
especially concentration and polymer size. Of the methodol-
ogies surveyed in this review, we believe that SS-nanopore
technology may have unique promise for translation given
its short measurement time, high sensitivity, broad dynamic
range for MW determination, and potential for integrative
assessment and automation. However, innovations with
other existing technologies continue to be developed as well,
suggesting ultimately that improvements in the overall capa-
bilities and availability of HA assessment can be expected.
Consequently, it is clear that techniques for probing HA
quantity and size will continue to provide new insights into
a variety of healthy biological processes and disease
pathologies.
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